Note

Isolation and structural analysis of the tetrasaccharide 3-deoxy-5-O-[3-O-(3-O-α-D-glucopyranosyl-L-glycero-α-D-manno-heptopyranosyl)-L-glycero-α-D-manno-heptopyranosyl]-D-manno-octulosonic acid from the core region of the lipopolysaccharide of Salmonella minnesota strain R5 (rough mutant chemotype RcP⁻) †

Otto Holst * and Helmut Brade

Forschungsinstitut Borstel, Institut für Experimentelle Biologie und Medizin, W-2061 Borstel (FRG) (Received September 23rd, 1992; accepted January 23rd, 1993)

The lipid A-proximal part of the core region of enterobacterial lipopolysaccharides (LPSs) contains invariably the sugars 3-deoxy-D-manno-octulosonic acid (Kdo) and heptose present as L-glycero-D-manno- (L,D-Hepp) or D-glycero-Dmanno-heptopyranose (p,p-Hepp). To a variable extent, other sugars were identified¹, e.g., in strains of Escherichia coli (D-Gal p, L-Rha p, D-Glc pN) or Proteus mirabilis (4-amino-4-deoxy-L-arabinose, D-Glcp, D-GalpA). Typical for many enterobacterial and some other LPSs is the presence of the tetrasaccharide α -D-Glc p- $(1 \rightarrow 3)$ - $L\alpha D$ -Hep p- $(1 \rightarrow 3)$ - $L\alpha D$ -Hep p- $(1 \rightarrow 5)$ -Kdo which may be substituted at various positions. To facilitate the assignment of the signals obtained in the complex ¹³C NMR spectra of larger core oligosaccharides, we have systematically characterised the core structures from deep rough mutants. In particular, we have characterised the Kdo- and Hep/Kdo-region of Re- and Rd-mutants, respectively. Thus, the disaccharides α -Kdo- $(2 \rightarrow 4)$ -Kdo² and α D-Hep p- $(1 \rightarrow 5)$ -Kdo^{3,4}, and the trisaccharides α -Kdo- $(2 \rightarrow 8)$ - α -Kdo- $(2 \rightarrow 4)$ -Kdo^{5,6} and α -Hep α - $(1 \rightarrow 8)$ 3)-L α D-Hepp- $(1 \rightarrow 5)$ -Kdo⁷ have been isolated and characterised by NMR and GLC-MS. Here, we report the isolation and structural analysis of the title tetrasaccharide 1 from the LPS of Salmonella minnesota R5, which also occurs in many other LPSs.

[†] Presented at the XVIth International Carbohydrate Symposium, Paris, France, July 5-10, 1992.

^{*} Corresponding author.

Hydrolysis of the LPS under conditions known to cleave ketosidic but not other glycosidic linkages released the core constituents of the LPS. Analysis by high-voltage paper electrophoresis (PE) revealed Kdo, small amounts of 3-deoxy-D-manno-octulopyranosonate 7-(2-aminoethyl phosphate)⁸, and a product with $M_{\rm Kdo}$ 0.31. The latter was isolated and purified in two steps by gel-permeation chromatography, and shown to possess structure 1.

Chemical analysis of 1 identified glucose, heptose, and Kdo in the molar ratios ~ 1:2:1. The absolute configuration of the glucose was established as D by GLC of the acetylated (R)-2-butyl glycoside. The retention time of the alditol acetate of the heptose was identical to that of the same derivative of synthetic L-glycero-D-manno-heptopyranose, and different from that of the alditol acetate of synthetic D-glycero-D-manno-heptopyranose. The retention time in GLC of the methylated octitol obtained from Kdo of the R5 core was identical to that of methylated 3-deoxy-D-galacto/talo-octitol obtained from synthetic Kdo, indicating its manno configuration.

Reduction (NaBH₄) and methylation of 1 afforded methylated methyl 3-deoxy-5-O-[3-O-(3-O-D-glucopyranosyl-L-glycero-D-manno-heptopyranosyl)-L-glycero-D-manno-heptopyranosyl]-D-glycero-D-galacto/talo-octonate ($T_{\rm maltitol}$ 2.40), which was identified in GLC-MS by its EI-mass spectrum¹⁰. After carboxyl-reduction⁴ followed by methylation analysis (hydrolysis in 8 M trifluoroacetic acid, reduction with NaB²H₄), GLC-MS revealed 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl-[1- 2 H]glucitol, 1,3,5-tri-O-acetyl-2,4,6,7-tetra-O-methyl-[1- 2 H]heptitol, and 1,5-di-O-acetyl-3-deoxy-2,4,6,7,8-penta-O-methyloctitol in the molar ratios \sim 1:2:1. In conclusion, 1 is 3-deoxy-5-O-[3-O-(3-O-D-glucopyranosyl-L-glycero-D-manno-heptopyranosyl)-L-glycero-D-manno-heptopyranosyl]-D-manno-octulosonic acid.

The signals obtained in ¹H (Table I) and ¹³C NMR spectroscopy (Table II) were assigned by homonuclear ¹H, ¹H and heteronuclear ¹H, ¹³C COSY NMR experi-

TABLE I 1 H NMR data (in ppm, 360 MHz, D_{2} O, $CH_{3}CN = 1.95$ ppm) and $J_{H,H}$ values of 1

Assignment	Chemical shift (J _{H,H} in Hz)						
	→ 5)-Kdo	→ 3)-Hep <i>p</i>	→ 3)-Hep <i>p</i>	$Glc p$ - $(1 \rightarrow$			
H-1		4.94	5.06	5.13			
		(1.8)	(1.8)	(4.0)			
H-2		4.02	4.11	3.43			
		(2.2)	(3.1)	(10.0)			
H-3ax	1.81	3.89	3.91	3.66			
	(12.3; -12.7)	(10.5)	(9.5)	(9.1)			
H-3eq	1.99						
-	(4.0)						
H-4	3.97-4.04	3.86	3.94	3.27			
		(9.0)	(9.4)	(9.6)			
H-5	3.96-4.00	3.84-3.90	3.70-3.76	3.70-3.76			
H-6a	3.75	3.86-3.92	3.90-3.94	3.71			
	(9.0)			(2.7; -13.1)			
H-6b				3.63-3.67			
H-7a	3.78-3.82	3.56 a	3.58 a				
		(7.3)	(7.6)				
H-7b		3.52 b	3.54 b				
		(5.1; -11.9)	(5.6; -11.4)				
H-8a	3.67-3.72						
H-8b	3.58-3.62						

a,b Assignments exchangeable.

ments, and by comparison with data published for $L\alpha D$ -Hepp- $(1 \rightarrow 3)$ - $L\alpha D$ -Hepp- $(1 \rightarrow 5)$ -Kdo 7 (13 C), $L\alpha D$ -Hepp- $(1 \rightarrow 3)$ - $L\alpha D$ -Hep $p^{11,12}$ (13 C) and its allyl glycoside 13 (14 H), $L\alpha D$ -Hepp- $(1 \rightarrow 5)$ -Kdo 3 (13 C) and its α -allyl ketoside 13 (14 H), the α -allyl glycosides of L,D-Hep p^{13} (14 H) and Kdo 6 (14 H, 13 C), and α -D-Glc p^{14} (14 H, 13 C). Compared with the 13 C NMR data of allyl α -Kdo, α -D-Glc, and the terminal Hep of $L\alpha D$ -Hepp- $(1 \rightarrow 3)$ - $L\alpha D$ -Hepp and $L\alpha D$ -Hepp- $(1 \rightarrow 5)$ -Kdo, the glycosidic linkages were proved by downfield shifts of C-1', C-1", and C-1"', respectively, and the substitution at O-5 of Kdo and O-3 of both L,D-Hep residues was indicated by downfield shifts for C-5, C-3', and C-3" of \sim 9, 7, and 8 ppm, respectively. A GATED 13 C NMR experiment 15 proved that all linkages were α (Table II).

TABLE II 13 C NMR data (in ppm, 90.6 MHz, D₂O, CH₃CN = 1.70 ppm) of 1

Residue	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8
→ 5)-Kdo	175.29	96.72	34.72	66.40	76.12	72.00	69.86	63.78 ª
\rightarrow 3)-Hep p	102.17 ^b	70.90	78.01	66.67	72.85	69.63	63.78 a,c	
\rightarrow 3)-Hep p	102.64 d	70.70	79.71	66.15	72.63 a	69.34	64.10 ^c	
$Glc p$ -(1 \rightarrow	101.41 ^e	72.63	73.65	70.50	73.18	61.50		

^a Non-resolved signal. ^b $J_{C-1',H-1'}$ 170.5 Hz. ^c Assignments exchangeable. ^d $J_{C-1'',H-1''}$ 172.6 Hz.

^e J_{C-1"',H-1"} 171.4 Hz.

In summary, our results indentified the structure of the isolated tetrasaccharide as 1.

EXPERIMENTAL

General methods for quantitative analyses were as described¹⁶. Methylation of reduced 1 was performed according to Ciucanu and Kerek¹⁷, and purification was done according to Waeghe et al.¹⁸. In methylation analysis of reduced and methylated 1, the hydrolysis was in 8 M trifluoroacetic acid (4 h, 100°C).

The absolute configuration of Glc [obtained from 1 after hydrolysis (4 M trifluoroacetic acid, 4 h, 100° C)] was determined by GLC of the acetylated (R)-2-butyl glycoside^{19,20} obtained after butanolysis (M HCl, 2 h, 85°C) and acetylation, compared with the same derivatives of authentic D- and L-Glc p, respectively.

GLC on a capillary column of SE 54 was performed as described²¹. Temperature programmes: 140°C for 3 min, then 3°C/min \rightarrow 250°C, for partially methylated alditol acetates; 200°C for 3 min, then 5°C/min \rightarrow 300°C, for reduced and methylated 1. The retention time for reduced and methylated 1 was determined relative to that of maltitol nona-acetate (T 1.00). GLC of the acetylated (R)-2-butyl glycosides was carried out on a fused-silica capillary column with chemically bonded SPB-5 (30 m \times 0.32 mm i.d., Supelco) at 0.1 MPa H₂ and 170°C. GLC-MS was performed as described²¹.

The optical rotation of 1 was measured on a solution in water, using a Perkin-Elmer 141 polarimeter.

One-dimensional ¹H and ¹³C and two-dimensional ¹H, ¹H and ¹H, ¹³C COSY NMR spectra were recorded at 23°C for solutions of 1 in D₂O, using a Bruker AM 360 L spectrometer and Bruker standard software. CH₃CN was the internal standard (1.95 ppm in ¹H, 1.70 ppm in ¹³C NMR spectroscopy).

Bacteria and bacterial LPS.—S. minnesota strain R5 (chemotype RcP⁻) was grown in a fermenter (14 L), killed with phenol (0.5%), centrifuged, and washed with EtOH, acetone (twice), and ether. The LPS was extracted²² from the dry bacteria in a yield of 2.9%.

Isolation and purification of 3-deoxy-5-O-[3-O-(3-O- α -D-glucopyranosyl-L-glycero- α -D-manno-heptopyranosyl)-L-glycero- α -D-manno-heptopyranosyl]-D-manno-octulosonic acid (1).—The LPS (3 g) was hydrolysed (1 h, 100°C) in 100 mM sodium acetate buffer (pH 4.4, 300 mL), and the hydrolysate was dialysed against water (3 × 500 mL) at 4°C. The combined diffusates were concentrated and then separated on a column (100 × 1.5 cm) of Bio-Gel P2 (Bio-Rad) in water. The first of two fractions was rechromatographed on a column (3.5 × 40 cm) of TSK HW40 (S) (Merck) in water, from which four fractions were obtained and analysed in PE. Only one spot ($M_{\rm Kdo}$ 0.31) was present in the second fraction, yielding 1 {50 mg, 1.6% of LPS, [α] $_{\rm D}^{22}$ + 128.4° (c 0.7)} after lyophilisation.

ACKNOWLEDGMENTS

We thank V. Susott for expert technical assistance, H. Moll for help with GLC-MS, and H.-P. Cordes for measuring the NMR data.

REFERENCES

- O. Holst and H. Brade, in D.C. Morrison and J.L. Ryan (Eds.), Bacterial Endotoxic Lipopolysaccharides, Vol. 1, CRC Press, Boca Raton, FL, 1992, pp 135-170.
- 2 H. Brade, U. Zähringer, E.T. Rietschel, R. Christian, G. Schulz, and F.M. Unger, Carbohydr. Res., 134 (1984) 157-166.
- 3 R. Christian, G. Schulz, and F.M. Unger, Tetrahedron Lett., 26 (1985) 3951-3954.
- 4 A. Tacken, E.T. Rietschel, and H. Brade, Carbohydr. Res., 149 (1986) 279-291.
- 5 H. Brade, L. Brade, and F.E. Nano, Proc. Natl. Acad. Sci. USA, 84 (1987) 2508-2512.
- 6 K. Bock, J.U. Thomsen, P. Kosma, R. Christian, O. Holst, and H. Brade, Carbohydr. Res., 229 (1992) 213-224.
- 7 O. Holst and H. Brade, Carbohydr. Res., 219 (1991) 247-251.
- 8 O. Holst, E. Röhrscheidt-Andrzejewski, H. Brade, and D. Charon, *Carbohydr. Res.*, 204 (1990) 93-102.
- 9 O. Holst, H. Brade, K. Dziewiszek, and A. Zamojski, Carbohydr. Res., 204 (1990) 1-9.
- 10 H. Brade, H. Moll, and E.T. Rietschel, Biomed. Mass Spectrom., 12 (1985) 602-609.
- 11 K. Dziewiszek, A. Banaszek, and A. Zamojski, Tetrahedron Lett., 28 (1987) 1569-1572.
- 12 H. Paulsen and A.C. Heitmann, Liebigs Ann. Chem., (1988) 1061-1071.
- 13 H. Paulsen, A. Wulff, and M. Brenken, Liebigs Ann. Chem. (1991) 1127-1145.
- 14 K. Bock and H. Thøgersen, Annu. Rep. NMR Spectrosc., 13 (1982) 1-57.
- 15 K. Bock and C. Pedersen, J. Chem. Soc., Perkin Trans. 2, (1974) 293-297.
- 16 W. Kaca, J. De Jongh-Leuvenink, U. Zähringer, E.T. Rietschel, H. Brade, J. Verhoef, and V. Sinnwell, Carbohydr. Res., 179 (1988) 289-299.
- 17 I. Ciucanu and F. Kerek, Carbohydr. Res., 131 (1984) 209-217.
- 18 T.J. Waeghe, A.G. Darvill, M. McNeill, and P. Albersheim, Carbohydr. Res., 123 (1983) 281-304.
- 19 G.J. Gerwig, J.P. Kamerling, and J.F.G. Vliegenthart, Carbohydr. Res., 62 (1978) 349-357.
- 20 S. Kondo, U. Zähringer, E.T. Rietschel, and K. Hisatsune, Carbohydr. Res., 188 (1989) 97-104.
- 21 O. Holst, E. Röhrscheidt-Andrzejewski, H.-P. Cordes, and H. Brade, *Carbohydr. Res.*, 188 (1989) 212-218.
- 22 C. Galanos, O. Lüderitz, and O. Westphal, Eur. J. Biochem., 9 (1969) 245-249.